3.8.9 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{(d+e x)^{5/2} (f+g x)^5} \, dx\) [709]

3.8.9.1 Optimal result
3.8.9.2 Mathematica [A] (verified)
3.8.9.3 Rubi [A] (verified)
3.8.9.4 Maple [B] (verified)
3.8.9.5 Fricas [B] (verification not implemented)
3.8.9.6 Sympy [F(-1)]
3.8.9.7 Maxima [F]
3.8.9.8 Giac [B] (verification not implemented)
3.8.9.9 Mupad [F(-1)]

3.8.9.1 Optimal result

Integrand size = 46, antiderivative size = 323 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^5} \, dx=-\frac {5 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{32 g^3 \sqrt {d+e x} (f+g x)^2}+\frac {5 c^3 d^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 g^3 (c d f-a e g) \sqrt {d+e x} (f+g x)}-\frac {5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 g^2 (d+e x)^{3/2} (f+g x)^3}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2} (f+g x)^4}+\frac {5 c^4 d^4 \arctan \left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{64 g^{7/2} (c d f-a e g)^{3/2}} \]

output
-5/24*c*d*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/g^2/(e*x+d)^(3/2)/(g*x+f 
)^3-1/4*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/g/(e*x+d)^(5/2)/(g*x+f)^4+ 
5/64*c^4*d^4*arctan(g^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e* 
g+c*d*f)^(1/2)/(e*x+d)^(1/2))/g^(7/2)/(-a*e*g+c*d*f)^(3/2)-5/32*c^2*d^2*(a 
*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g^3/(g*x+f)^2/(e*x+d)^(1/2)+5/64*c^3 
*d^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g^3/(-a*e*g+c*d*f)/(g*x+f)/(e 
*x+d)^(1/2)
 
3.8.9.2 Mathematica [A] (verified)

Time = 1.21 (sec) , antiderivative size = 244, normalized size of antiderivative = 0.76 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^5} \, dx=\frac {c^4 d^4 ((a e+c d x) (d+e x))^{5/2} \left (\frac {\sqrt {g} \left (48 a^3 e^3 g^3-8 a^2 c d e^2 g^2 (f-17 g x)+2 a c^2 d^2 e g \left (-5 f^2-18 f g x+59 g^2 x^2\right )-c^3 d^3 \left (15 f^3+55 f^2 g x+73 f g^2 x^2-15 g^3 x^3\right )\right )}{c^4 d^4 (c d f-a e g) (a e+c d x)^2 (f+g x)^4}+\frac {15 \arctan \left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )}{(c d f-a e g)^{3/2} (a e+c d x)^{5/2}}\right )}{192 g^{7/2} (d+e x)^{5/2}} \]

input
Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/((d + e*x)^(5/2)*( 
f + g*x)^5),x]
 
output
(c^4*d^4*((a*e + c*d*x)*(d + e*x))^(5/2)*((Sqrt[g]*(48*a^3*e^3*g^3 - 8*a^2 
*c*d*e^2*g^2*(f - 17*g*x) + 2*a*c^2*d^2*e*g*(-5*f^2 - 18*f*g*x + 59*g^2*x^ 
2) - c^3*d^3*(15*f^3 + 55*f^2*g*x + 73*f*g^2*x^2 - 15*g^3*x^3)))/(c^4*d^4* 
(c*d*f - a*e*g)*(a*e + c*d*x)^2*(f + g*x)^4) + (15*ArcTan[(Sqrt[g]*Sqrt[a* 
e + c*d*x])/Sqrt[c*d*f - a*e*g]])/((c*d*f - a*e*g)^(3/2)*(a*e + c*d*x)^(5/ 
2))))/(192*g^(7/2)*(d + e*x)^(5/2))
 
3.8.9.3 Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 326, normalized size of antiderivative = 1.01, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {1249, 1249, 1249, 1254, 1255, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^5} \, dx\)

\(\Big \downarrow \) 1249

\(\displaystyle \frac {5 c d \int \frac {\left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^4}dx}{8 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2} (f+g x)^4}\)

\(\Big \downarrow \) 1249

\(\displaystyle \frac {5 c d \left (\frac {c d \int \frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{\sqrt {d+e x} (f+g x)^3}dx}{2 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2} (f+g x)^3}\right )}{8 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2} (f+g x)^4}\)

\(\Big \downarrow \) 1249

\(\displaystyle \frac {5 c d \left (\frac {c d \left (\frac {c d \int \frac {\sqrt {d+e x}}{(f+g x)^2 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{4 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 g \sqrt {d+e x} (f+g x)^2}\right )}{2 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2} (f+g x)^3}\right )}{8 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2} (f+g x)^4}\)

\(\Big \downarrow \) 1254

\(\displaystyle \frac {5 c d \left (\frac {c d \left (\frac {c d \left (\frac {c d \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x) (c d f-a e g)}\right )}{4 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 g \sqrt {d+e x} (f+g x)^2}\right )}{2 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2} (f+g x)^3}\right )}{8 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2} (f+g x)^4}\)

\(\Big \downarrow \) 1255

\(\displaystyle \frac {5 c d \left (\frac {c d \left (\frac {c d \left (\frac {c d e^2 \int \frac {1}{(c d f-a e g) e^2+\frac {g \left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right ) e^2}{d+e x}}d\frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{\sqrt {d+e x}}}{c d f-a e g}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x) (c d f-a e g)}\right )}{4 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 g \sqrt {d+e x} (f+g x)^2}\right )}{2 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2} (f+g x)^3}\right )}{8 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2} (f+g x)^4}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {5 c d \left (\frac {c d \left (\frac {c d \left (\frac {c d \arctan \left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{\sqrt {g} (c d f-a e g)^{3/2}}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x) (c d f-a e g)}\right )}{4 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 g \sqrt {d+e x} (f+g x)^2}\right )}{2 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2} (f+g x)^3}\right )}{8 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2} (f+g x)^4}\)

input
Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/((d + e*x)^(5/2)*(f + g* 
x)^5),x]
 
output
-1/4*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(g*(d + e*x)^(5/2)*(f + 
 g*x)^4) + (5*c*d*(-1/3*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(g*( 
d + e*x)^(3/2)*(f + g*x)^3) + (c*d*(-1/2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + 
c*d*e*x^2]/(g*Sqrt[d + e*x]*(f + g*x)^2) + (c*d*(Sqrt[a*d*e + (c*d^2 + a*e 
^2)*x + c*d*e*x^2]/((c*d*f - a*e*g)*Sqrt[d + e*x]*(f + g*x)) + (c*d*ArcTan 
[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g 
]*Sqrt[d + e*x])])/(Sqrt[g]*(c*d*f - a*e*g)^(3/2))))/(4*g)))/(2*g)))/(8*g)
 

3.8.9.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1249
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^m*(f + g*x)^(n + 1)*((a + 
 b*x + c*x^2)^p/(g*(n + 1))), x] + Simp[c*(m/(e*g*(n + 1)))   Int[(d + e*x) 
^(m + 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b 
, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && G 
tQ[p, 0] && LtQ[n, -1] &&  !(IntegerQ[n + p] && LeQ[n + p + 2, 0])
 

rule 1254
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-e^2)*(d + e*x)^(m - 1)*(f + g*x)^ 
(n + 1)*((a + b*x + c*x^2)^(p + 1)/((n + 1)*(c*e*f + c*d*g - b*e*g))), x] - 
 Simp[c*e*((m - n - 2)/((n + 1)*(c*e*f + c*d*g - b*e*g)))   Int[(d + e*x)^m 
*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, 
g, m, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && LtQ[n, -1 
] && IntegerQ[2*p]
 

rule 1255
Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + 
 (c_.)*(x_)^2]), x_Symbol] :> Simp[2*e^2   Subst[Int[1/(c*(e*f + d*g) - b*e 
*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{ 
a, b, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
 
3.8.9.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(654\) vs. \(2(285)=570\).

Time = 0.55 (sec) , antiderivative size = 655, normalized size of antiderivative = 2.03

method result size
default \(\frac {\sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (15 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{4} d^{4} g^{4} x^{4}+60 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{4} d^{4} f \,g^{3} x^{3}+90 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{4} d^{4} f^{2} g^{2} x^{2}+60 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{4} d^{4} f^{3} g x -15 c^{3} d^{3} g^{3} x^{3} \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}+15 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{4} d^{4} f^{4}-118 a \,c^{2} d^{2} e \,g^{3} x^{2} \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}+73 c^{3} d^{3} f \,g^{2} x^{2} \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}-136 a^{2} c d \,e^{2} g^{3} x \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}+36 a \,c^{2} d^{2} e f \,g^{2} x \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}+55 c^{3} d^{3} f^{2} g x \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}-48 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a^{3} e^{3} g^{3}+8 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a^{2} c d \,e^{2} f \,g^{2}+10 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a \,c^{2} d^{2} e \,f^{2} g +15 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, c^{3} d^{3} f^{3}\right )}{192 \sqrt {e x +d}\, \sqrt {c d x +a e}\, \left (a e g -c d f \right ) g^{3} \left (g x +f \right )^{4} \sqrt {\left (a e g -c d f \right ) g}}\) \(655\)

input
int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^5,x,meth 
od=_RETURNVERBOSE)
 
output
1/192*((c*d*x+a*e)*(e*x+d))^(1/2)*(15*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g- 
c*d*f)*g)^(1/2))*c^4*d^4*g^4*x^4+60*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c* 
d*f)*g)^(1/2))*c^4*d^4*f*g^3*x^3+90*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c* 
d*f)*g)^(1/2))*c^4*d^4*f^2*g^2*x^2+60*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g- 
c*d*f)*g)^(1/2))*c^4*d^4*f^3*g*x-15*c^3*d^3*g^3*x^3*(c*d*x+a*e)^(1/2)*((a* 
e*g-c*d*f)*g)^(1/2)+15*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2) 
)*c^4*d^4*f^4-118*a*c^2*d^2*e*g^3*x^2*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^ 
(1/2)+73*c^3*d^3*f*g^2*x^2*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)-136*a 
^2*c*d*e^2*g^3*x*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)+36*a*c^2*d^2*e* 
f*g^2*x*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)+55*c^3*d^3*f^2*g*x*(c*d* 
x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)-48*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g 
)^(1/2)*a^3*e^3*g^3+8*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*a^2*c*d*e^ 
2*f*g^2+10*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*a*c^2*d^2*e*f^2*g+15* 
(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*c^3*d^3*f^3)/(e*x+d)^(1/2)/(c*d* 
x+a*e)^(1/2)/(a*e*g-c*d*f)/g^3/(g*x+f)^4/((a*e*g-c*d*f)*g)^(1/2)
 
3.8.9.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 910 vs. \(2 (285) = 570\).

Time = 0.55 (sec) , antiderivative size = 1862, normalized size of antiderivative = 5.76 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^5} \, dx=\text {Too large to display} \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^5, 
x, algorithm="fricas")
 
output
[1/384*(15*(c^4*d^4*e*g^4*x^5 + c^4*d^5*f^4 + (4*c^4*d^4*e*f*g^3 + c^4*d^5 
*g^4)*x^4 + 2*(3*c^4*d^4*e*f^2*g^2 + 2*c^4*d^5*f*g^3)*x^3 + 2*(2*c^4*d^4*e 
*f^3*g + 3*c^4*d^5*f^2*g^2)*x^2 + (c^4*d^4*e*f^4 + 4*c^4*d^5*f^3*g)*x)*sqr 
t(-c*d*f*g + a*e*g^2)*log(-(c*d*e*g*x^2 - c*d^2*f + 2*a*d*e*g - (c*d*e*f - 
 (c*d^2 + 2*a*e^2)*g)*x + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sq 
rt(-c*d*f*g + a*e*g^2)*sqrt(e*x + d))/(e*g*x^2 + d*f + (e*f + d*g)*x)) - 2 
*(15*c^4*d^4*f^4*g - 5*a*c^3*d^3*e*f^3*g^2 - 2*a^2*c^2*d^2*e^2*f^2*g^3 - 5 
6*a^3*c*d*e^3*f*g^4 + 48*a^4*e^4*g^5 - 15*(c^4*d^4*f*g^4 - a*c^3*d^3*e*g^5 
)*x^3 + (73*c^4*d^4*f^2*g^3 - 191*a*c^3*d^3*e*f*g^4 + 118*a^2*c^2*d^2*e^2* 
g^5)*x^2 + (55*c^4*d^4*f^3*g^2 - 19*a*c^3*d^3*e*f^2*g^3 - 172*a^2*c^2*d^2* 
e^2*f*g^4 + 136*a^3*c*d*e^3*g^5)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^ 
2)*x)*sqrt(e*x + d))/(c^2*d^3*f^6*g^4 - 2*a*c*d^2*e*f^5*g^5 + a^2*d*e^2*f^ 
4*g^6 + (c^2*d^2*e*f^2*g^8 - 2*a*c*d*e^2*f*g^9 + a^2*e^3*g^10)*x^5 + (4*c^ 
2*d^2*e*f^3*g^7 + a^2*d*e^2*g^10 + (c^2*d^3 - 8*a*c*d*e^2)*f^2*g^8 - 2*(a* 
c*d^2*e - 2*a^2*e^3)*f*g^9)*x^4 + 2*(3*c^2*d^2*e*f^4*g^6 + 2*a^2*d*e^2*f*g 
^9 + 2*(c^2*d^3 - 3*a*c*d*e^2)*f^3*g^7 - (4*a*c*d^2*e - 3*a^2*e^3)*f^2*g^8 
)*x^3 + 2*(2*c^2*d^2*e*f^5*g^5 + 3*a^2*d*e^2*f^2*g^8 + (3*c^2*d^3 - 4*a*c* 
d*e^2)*f^4*g^6 - 2*(3*a*c*d^2*e - a^2*e^3)*f^3*g^7)*x^2 + (c^2*d^2*e*f^6*g 
^4 + 4*a^2*d*e^2*f^3*g^7 + 2*(2*c^2*d^3 - a*c*d*e^2)*f^5*g^5 - (8*a*c*d^2* 
e - a^2*e^3)*f^4*g^6)*x), -1/192*(15*(c^4*d^4*e*g^4*x^5 + c^4*d^5*f^4 +...
 
3.8.9.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^5} \, dx=\text {Timed out} \]

input
integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d)**(5/2)/(g*x+ 
f)**5,x)
 
output
Timed out
 
3.8.9.7 Maxima [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^5} \, dx=\int { \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {5}{2}}}{{\left (e x + d\right )}^{\frac {5}{2}} {\left (g x + f\right )}^{5}} \,d x } \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^5, 
x, algorithm="maxima")
 
output
integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)/((e*x + d)^(5/2)*( 
g*x + f)^5), x)
 
3.8.9.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1574 vs. \(2 (285) = 570\).

Time = 1.75 (sec) , antiderivative size = 1574, normalized size of antiderivative = 4.87 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^5} \, dx=\text {Too large to display} \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^5, 
x, algorithm="giac")
 
output
5/64*c^4*d^4*abs(e)*arctan(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g/(sqrt 
(c*d*f*g - a*e*g^2)*e))/((c*d*f*g^3 - a*e*g^4)*sqrt(c*d*f*g - a*e*g^2)*e) 
- 1/192*(15*c^4*d^4*e^4*f^4*abs(e)*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c 
*d*f*g - a*e*g^2)*e)) - 60*c^4*d^5*e^3*f^3*g*abs(e)*arctan(sqrt(-c*d^2*e + 
 a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) + 90*c^4*d^6*e^2*f^2*g^2*abs(e)*arc 
tan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) - 60*c^4*d^7*e*f 
*g^3*abs(e)*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) + 
 15*c^4*d^8*g^4*abs(e)*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e 
*g^2)*e)) - 15*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c^3*d^3*e^3* 
f^3*abs(e) + 55*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c^3*d^4*e^2 
*f^2*g*abs(e) - 10*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a*c^2*d^ 
2*e^4*f^2*g*abs(e) - 73*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c^3 
*d^5*e*f*g^2*abs(e) + 36*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a* 
c^2*d^3*e^3*f*g^2*abs(e) - 8*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2 
)*a^2*c*d*e^5*f*g^2*abs(e) - 15*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e* 
g^2)*c^3*d^6*g^3*abs(e) + 118*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^ 
2)*a*c^2*d^4*e^2*g^3*abs(e) - 136*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a* 
e*g^2)*a^2*c*d^2*e^4*g^3*abs(e) + 48*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - 
 a*e*g^2)*a^3*e^6*g^3*abs(e))/(sqrt(c*d*f*g - a*e*g^2)*c*d*e^5*f^5*g^3 - 4 
*sqrt(c*d*f*g - a*e*g^2)*c*d^2*e^4*f^4*g^4 - sqrt(c*d*f*g - a*e*g^2)*a*...
 
3.8.9.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^5} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{5/2}}{{\left (f+g\,x\right )}^5\,{\left (d+e\,x\right )}^{5/2}} \,d x \]

input
int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/((f + g*x)^5*(d + e*x)^( 
5/2)),x)
 
output
int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/((f + g*x)^5*(d + e*x)^( 
5/2)), x)